
Developing a custom flight simulation for a
mission from Earth to Triton

Martin Rupp
SCIENTIFIC AND COMPUTER DEVELOPMENT SCD LTD

Developing a custom flight simulation for a mission from Earth to Triton
Introduction
Scope of the simulation
Reminder about gravity-assisted propulsion principles

General principle
N-body problem

Obtaining NASA data for planets' orbits
Numerical computation of planet orbits
Heliocentric coordinate reference

Solar Ecliptic Coordinate System (SE)
Heliographic Inertial Coordinate System (HGI)
Heliographic (rotating) Coordinate System (HG)

Trajectory computation
Lambert Solver

Choice of the graphical engine
Development of the simulation

Preparation of the mission
The first stage of the mission
Second stage of the mission

Conclusion
REFERENCES

Introduction

What are the techniques used to simulate orbital flight? How do NASA and other space
agencies compute the parameters of a flight and how do they simulate space missions?
There are several orbital simulation software which are in open access. For example, the
General Mission Analysis Tool (GMAT).

https://software.nasa.gov/software/GSC-17177-1


In this small article, we want to show the steps for the development of a basic orbital flight
simulator that we will write in C#. GMAT is a very complete tool but it doesn't have
parameters for Triton and developing a plug-in for GMAT isn't straightforward.

Scope of the simulation

In this scenario, we simulate sending a CubeSat from Earth to Triton. As a first step, a heavy
launcher sends the mothership to Neptune, using gravity-assisted propulsion. The second
step consists of the mother ship detaching the CubeSat as she is injected into Neptune's
orbit, computing the orbit transfer, and sending the Cubesat into Triton's orbit. The goal of
the mission is to observe Triton from its orbit.

Reminder about gravity-assisted propulsion principles

General principle

In the same a boat can navigate, without being self-propelled, in a river, just by following the
flow of the water stream, a spaceship can navigate in space without being self-propelled, just
by following the flow of the gravitation stream. In both cases, this is a force field that acts on
the ship and moves it through space. Self-propulsion is also required, in both cases, at the
start and end of the journey. For the boat, it's required to leave the dock when the trip starts
by using engines and, reversely, to leave the river flow when approaching the destination
port. For the ship, engines are needed for leaving Earth (or any dock in general) during a
boost phase and, at the end of the trip, to leave the gravitation field to be injected into the
orbit of the destination.

One of the main differences between navigation in a water body and space is that, in space,
apart from Gravitation, there are generally no matter, no viscous forces that will slow down
the ship.

The ship’s mass is infinitesimal in space compared to the cosmic bodies around her so it can
‘freely’ jump from one orbit to another, ‘playing’ with the different planets or moons
trajectories and the corresponding gravitation fields.

In the context of the solar system, which is the context of the simulation, the dominant
gravitation field is the Sun's. Most planets orbit around the sun, roughly in the same
two-dimensional plane, except Neptune which orbits in a slightly inclined plane.

Therefore, a spaceship would primarily rely on the sun's attraction to navigate from one
planet to another, computing adequately the trajectory to coincide with the trajectory of the
target planet at the rendezvous point. Indeed, the trajectories of the solar system planets are
rather almost 100% predictable and not subject to fluctuational changes. The moons of the
solar system may be potentially much less predictable, at least some of them.



N-body problem

The problem of determining the trajectory of a spaceship when considering gravity-assisted
navigation is related to the n-body problem.

If we name the spaceship then, its motion according to a celestial body (planet or moon)
of the solar system is ruled by the 2-body problem. The 2-body problem can be broken

down into two distinct 1-body problems by considering the barycentre G of the ponderated
points .

In the case of a spaceship, it usually coincides concretely with .

It is well known that in such a case, trajectories shall be conic: either elliptic, parabolic, or
hyperbolic.

Using Newton’s principles, the equation of a spaceship in motion (eq1) is :

is Newton’s constant
is the position vector of the spaceship in the referential of

.

This equation is the basis of all the subsequent computations for the parameters of the
trajectories.

Obtaining NASA data for planets' orbits

Numerical computation of planet orbits

The orbit of each planet in the solar system can be computed using Kepler's formula.
However, in the context of that simulation, we preferred using existing data from NASA.
The Horizons System, maintained by the JPL, contains a comprehensive database of
coordinates of celestial objects (past, present, and future).

Heliocentric Trajectories for Selected Spacecraft,Planets, and Comets (nasa.gov)

Heliocentric coordinate reference

The data that we choose to use are heliocentric coordinate systems. Heliocentric simply
means that the referential of the trajectory is the referential created by the sun with the
following axes:

https://omniweb.gsfc.nasa.gov/coho/helios/heli.html


Solar Ecliptic Coordinate System (SE)
The SE is a heliocentric coordinate system with the Z-axis normal to and northward from the
ecliptic plane. The ecliptic plane is defined as the imaginary plane containing the Earth's
orbit around the sun. The X-axis extends toward the first point of Aries (Vernal Equinox, i.e.
to the Sun from Earth on the first day of Spring). The Vernal equinox is defined as one of the
two moments in the year when the Sun is exactly above the Equator and day and night are
of equal length, the other one occurring in Autumn. At these points the ecliptic plane and the
celestial equator intersect. The Y-axis completes the right-handed set.

Illustration 1: SE coordinate system

The position of a point in space is defined by the following coordinates:

● RAD_AU (radius)
● SE_LAT (ecliptic latitude)
● SE_LONG (ecliptic longitude)



Illustration 2: SE coordinate system

Heliographic Inertial Coordinate System (HGI)
The HGI coordinates are Sun-centred and inertially fixed concerning an X-axis directed
along the intersection line of the ecliptic and solar equatorial planes, and defines zero of the
longitude.

Heliographic (rotating) Coordinate System (HG)
HG differs from HGI only in the sense that the zero of the longitude, HG_LONG is fixed on
the Sun and (by convention) rotates at the fixed period of 25.38 days

Trajectory computation

Lambert Solver

Lambert's problem is the determination of an orbit from two position vectors and the time of
flight. This consists of finding solutions of eq1 (defined earlier) with boundary
conditions .

- is a solution of eq1

-
-



This problem is not trivial and there are no exact solutions for it. Any algorithm that provides
a method to find numerical solutions for it is called a Lambert’s solver.
Such solvers are routinely used by space agencies to determine the trajectories of
spaceships for interplanetary missions. They vary in efficiency and precision.

In our simulator, we use a Lambert Solver based on the Matlab code available in [1],
Appendix D.12.

The Lambert Solver always determines two possible trajectories: one prograde and the other
retrograde.

Choice of the graphical engine

There are a lot of graphical engines that can be used for the simulation, for example, Unreal
Engine or Unity3D. We preferred something more simple and we chose a simple but efficient
graphical engine using GDI and available as a winform component: Editor3D. Editor3D and
Graph3D are available as a 3D surface plot control and can be downloaded from Code
Project.

This component doesn’t use hardware acceleration code therefore the number of
polygons that are displayed will determine the drawing speed.

https://www.codeproject.com/Articles/5294893/A-Csharp-3D-Surface-Plot-Control
https://www.codeproject.com/Articles/5293980/Editor3D-A-Windows-Forms-Render-Control-with-inter
https://www.codeproject.com/Articles/5293980/Editor3D-A-Windows-Forms-Render-Control-with-inter


Illustration 3: Graph3D graphical engine component

This component has enough functionalities for our small simulation project. We will
not be able to use texture or complex 3D effects but we will be able to render the
orbits of the planets and moons of the solar system in the chosen referential and plot
the trajectory of the mother ship as well as the trajectory of the satellite. The
component is available as an open-source component for C# and the .NET platform,
which means that we can eventually modify and recompile the graphical engine if we
need to.

Development of the simulation

Our simulation uses Winforms and implements libraries and algorithms described in [1].
We separate the software into three UI components :

- Preparation of the mission: definition of the mission parameters
- First stage of the mission: segment Earth Orbit - Neptune Orbit
- Second stage of the mission: segment Neptune Orbit - Triton Orbit



Preparation of the mission

Illustration 4: Preparation of segment#1

Illustration 5: Solving trajectory for segment#1



Illustration 6: Solving trajectory for segment#2

The first stage of the mission

Illustration 7: Departure of the mothership from Earth orbit

The simulation of the segment Earth-Neptune offers various data and information:
- Distance of the spaceship from the center of the sun (in AU units)
- Velocity of the spaceship



- Coordinates of the spaceship in the SE system
- Current date
- Display of the planets of the solar system involved in the segment and their orbits
- Changing simulation speed
- Control for the simulation (pause, resume)
- Choose camera view

Illustration 8: Simulation Settings

Illustration 9: Segment#1 simulation



Illustration 10: Segment#1 completion (Neptune arrival)

Second stage of the mission

Illustration 11: Segment#2 simulation



Illustration 12: Segment#2 Completion

Conclusion

The simulator developed is very basic and does not support manoeuvers in space (using
thrusters) or the initial segment: multi-stage rocket launch (from Earth).
However, despite its simplicity, it provides accurate estimation and computations.

REFERENCES

[1] Orbital Mechanics for Engineering Students, Howard D. Curtis
[2] Heliospheric Coordinate Systems M.Franz, D. Harper


